|
|||
1. Solaris TCPIP Protocol Suite (Overview) 2. Planning an IPv4 Addressing Scheme (Tasks 3. Planning an IPv6 Addressing Scheme (Overview) 4. Planning an IPv6 Network (Tasks) 5. Configuring TCP/IP Network Services and IPv4 Addressing (Tasks) Before You Configure an IPv4 Network (Task Map) Determining Host Configuration Modes Adding a Subnet to a Network (Task Map) Network Configuration Task Map Configuring Systems on the Local Network How to Configure a Host for Local Files Mode How to Set Up a Network Configuration Server How to Configure Hosts for Network Client Mode How to Change the IPv4 Address and Other Network Configuration Parameters Packet Forwarding and Routing on IPv4 Networks Monitoring and Modifying Transport Layer Services How to Log the IP Addresses of All Incoming TCP Connections How to Add Services That Use the SCTP Protocol How to Use TCP Wrappers to Control Access to TCP Services 6. Administering Network Interfaces (Tasks) 7. Enabling IPv6 on a Network (Tasks) 8. Administering a TCP/IP Network (Tasks) 9. Troubleshooting Network Problems (Tasks) 10. TCP/IP and IPv4 in Depth (Reference) 12. About Solaris DHCP (Overview) 13. Planning for DHCP Service (Tasks) 14. Configuring the DHCP Service (Tasks) 15. Administering DHCP (Tasks) 16. Configuring and Administering DHCP Clients 17. Troubleshooting DHCP (Reference) 18. DHCP Commands and Files (Reference) 19. IP Security Architecture (Overview) 21. IP Security Architecture (Reference) 22. Internet Key Exchange (Overview) 24. Internet Key Exchange (Reference) 25. Solaris IP Filter (Overview) 28. Administering Mobile IP (Tasks) 29. Mobile IP Files and Commands (Reference) 30. Introducing IPMP (Overview) 31. Administering IPMP (Tasks) Part VI IP Quality of Service (IPQoS) 32. Introducing IPQoS (Overview) 33. Planning for an IPQoS-Enabled Network (Tasks) 34. Creating the IPQoS Configuration File (Tasks) 35. Starting and Maintaining IPQoS (Tasks) 36. Using Flow Accounting and Statistics Gathering (Tasks) |
Configuring Systems on the Local NetworkNetwork software installation occurs along with the installation of the operating system software. At that time, certain IP configuration parameters must be stored in appropriate files so that they can be read at boot time. The network configuration process involves creating or editing the network configuration files. How configuration information is made available to a system's kernel is conditional. The availability depends on whether these files are stored locally (local files mode) or acquired from the network configuration server (network client mode). The parameters that are supplied during network configuration follow:
If the Solaris installation program detects more one interface on the system, you can optionally configure the additional interfaces during installation. For complete instructions, see Solaris Express Installation Guide: Basic Installations. This chapter contains information on creating and editing local configuration files. See System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP) for information on working with name service databases. How to Configure a Host for Local Files ModeUse this procedure for configuring TCP/IP on a host that runs in local files mode.
How to Set Up a Network Configuration ServerInformation for setting up installation servers and boot servers is found in Solaris Express Installation Guide: Basic Installations.
More InformationAdministering the in.tftpdDaemonThe in.tftpd daemon is managed by the Service Management Facility. Administrative actions on in.tftpd, such as enabling, disabling, or restarting, can be performed using the svcadm command. Responsibility for initiating and restarting this service is delegated to inetd. Use the inetadm command to make configuration changes and to view configuration information for in.tftpd. You can query the service's status by using the svcs command. For an overview of the Service Management Facility, refer to Chapter 14, Managing Services (Overview), in System Administration Guide: Basic Administration. Configuring Network ClientsNetwork clients receive their configuration information from network configuration servers. Therefore, before you configure a host as a network client you must ensure that at least one network configuration server is set up for the network. How to Configure Hosts for Network Client ModeDo the following procedure on each host to be configured in network client mode.
How to Change the IPv4 Address and Other Network Configuration ParametersThis procedure explains how to modify the IPv4 address, host name, and other network parameters on a previously installed system. Use the procedure for modifying the IP address of a server or networked standalone system. The procedure does not apply to network clients or appliances. The steps create a configuration that persists across reboots. Note - The instructions apply specifically to changing the IPv4 address of the primary network interface. To add another interface to the system, refer to How to Configure a Physical Interface After System Installation. In almost all cases, the following steps use traditional IPv4 dotted decimal notation to specify the IPv4 address and subnet mask. Alternatively, you can use CIDR notation to specify the IPv4 address in all the applicable files in this procedure. For an introduction to CIDR notation, see IPv4 Addresses in CIDR Format.
This example shows how to change the following network parameters of a system that is moved to another subnet:
Check the system's current status: # hostname myhost # ifconfig -a lo0: flags=1000849 <UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 eri0: flags=1000843 <UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2 inet 10.0.0.14 netmask ff000000 broadcast 10.255.255.255 ether 8:0:20:c1:8b:c3 Next, change the system's host name and the IP address of eri0 in the appropriate files: # vi /etc/nodename mynewhostname # vi /etc/inet/hosts # # Internet host table # 127.0.0.1 localhost 192.168.55.14 mynewhostname loghost # vi /etc/hostname.eri0 192.168.55.14 netmask + 255.255.255.0 Finally, change the netmask and the IP address of the default router. # vi /etc/netmasks. . . 192.168.55.0 255.255.255.0 # vi /etc/defaultrouter 192.168.55.200 #moved system to 192.168.55 net # After making these changes, reboot the system. # reboot -- -r Verify that the configuration you just set is maintained after the reboot: # hostname mynewhostname # ifconfig -a lo0: flags=1000849 <UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 eri0: flags=1000843 <UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2 inet 192.168.55.14 netmask ffffff00 broadcast 10.255.255.255 ether 8:0:20:c1:8b:c3Example 5-2 Changing the IP Address and Host Name For the Current Session This example shows how to change a host's name, IP address of the primary network interface, and subnet mask for the current session only. If you reboot, the system reverts to its previous IP address and subnet mask. The IP address for the primary network interface eri0 changes from 10.0.0.14 to 192.168.34.100. # ifconfig -alo0: flags=1000849 <UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 eri0: flags=1000843 <UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2 inet 10.0.0.14 netmask ff000000 broadcast 10.255.255.255 ether 8:0:20:c1:8b:c3 # ifconfig eri0 192.168.34.100 netmask 255.255.255.0 broadcast + up # vi /etc/nodename mynewhostname # ifconfig -a lo0: flags=1000849 <UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 eri0: flags=1000843 <UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2 inet 192.168.34.100 netmask ffffff00 broadcast 10.255.255.255 ether 8:0:20:c1:8b:c3 # hostname mynewhostnameExample 5-3 Changing the IPv4 Address for the Current Session, Using CIDR Notation This example shows how to change a host name and IP address for the current session only, using CIDR notation. If you reboot, the system reverts to its previous IP address and subnet mask. The IP address for the primary network interface, eri0, changes from 10.0.0.14 to 192.168.6.25/27. # ifconfig -a lo0: flags=1000849 <UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 eri0: flags=1000843 <UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2 inet 10.0.0.14 netmask ff000000 broadcast 10.255.255.255 ether 8:0:20:c1:8b:c3 # ifconfig eri0 192.168.6.25/27 broadcast + up # vi /etc/nodename mynewhostname # ifconfig -a lo0: flags=1000849 <UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 eri0: flags=1000843 <UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2 inet 192.168.06.25 netmask ffffffe0 broadcast 10.255.255.255 ether 8:0:20:c1:8b:c3 # hostname mynewhostname When you use CIDR notation for the IPv4 address, you do not have to specify the netmask. ifconfig uses the network prefix designation to determine the netmask. For example, for the 192.168.6.0/27 network, ifconfig sets the netmask ffffffe0. If you had used the more common /24 prefix designation, the resulting netmask is ffffff00. Using the /24 prefix designation is the equivalent of specifying the netmask 255.255.255.0 to ifconfig when configuring a new IP address. See AlsoTo change the IP address of an interface other than the primary network interface, refer to System Administration Guide: Basic Administration and How to Configure a Physical Interface After System Installation. |
||
|